
1

1

Basic Tokenizing,
Indexing, and

Implementation of
Vector-Space Retrieval

2

Java VSR Implementation

• Simple vector-space retrieval (VSR) system
written in Java.

• Code is in package ir.vsr

• All code is in /u/mooney/ir-code

• VSR code is in /u/mooney/ir-code/ir/vsr

• Handles HTML and generic ASCII
documents where each document is a file.

• For now, ignore anything about “feedback.”

3

Simple Tokenizing

• Analyze text into a sequence of discrete tokens
(words).

• Sometimes punctuation (e-mail), numbers (1999),
and case (Republican vs. republican) can be a
meaningful part of a token.

• However, usually they are not.

• Simplest approach is to ignore all numbers and
punctuation and use only case-insensitive unbroken
strings of alphabetic characters as tokens.

2

4

Tokenizing HTML

• Should text in HTML commands not
typically seen by the user be included as
tokens?
– Words appearing in URLs.

– Words appearing in “meta text” of images.

• Simplest approach used in VSR is to
exclude all HTML tag information from
tokenization.
– Parses HTML using utilities in Java Swing

package, and collects all raw text.

5

Documents in VSR

Document

TextStringDocument FileDocument

TextFileDocument HTMLFileDocument

(used for typed queries)

(used for ASCII files) (used for HTML files)

6

Stopwords

• It is typical to exclude high-frequency
words (e.g. function words: “a”, “the”, “in”,
“to”; pronouns: “I”, “he”, “she”, “it”).

• Stopwords are language dependent. VSR
uses a standard set of about 500 for English.

• For efficiency, store strings for stopwords in
a hashtable to recognize them in constant
time.

3

7

Stemming

• Reduce tokens to “root” form of words to
recognize morphological variation.
– “computer”, “computational”, “computation”

all reduced to same token “compute”

• Correct morphological analysis is language
specific and can be complex.

• Stemming “blindly” strips off known
affixes (prefixes and suffixes) in an iterative
fashion.

8

Porter Stemmer

• Simple procedure for removing known
affixes in English without using a dictionary.

• Can produce unusual stems that are not
English words:
– “computer”, “computational”, “computation” all

reduced to same token “comput”

• May conflate (reduce to the same token)
words that are actually distinct.

• Not recognize all morphological derivations.

9

Porter Stemmer Errors

• Errors of “comission”:
– organization, organ organ

– police, policy polic

– arm, army arm

• Errors of “omission”:
– cylinder, cylindrical

– create, creation

– Europe, European

4

10

Sparse Vectors

• Vocabulary and therefore dimensionality of
vectors can be very large, ~104 .

• However, most documents and queries do
not contain most words, so vectors are
sparse (i.e. most entries are 0).

• Need efficient methods for storing and
computing with sparse vectors.

11

Sparse Vectors as Lists

• Store vectors as linked lists of non-zero-
weight tokens paired with a weight.
– Space proportional to number of unique tokens

(n) in document.

– Requires linear search of the list to find (or
change) the weight of a specific token.

– Requires quadratic time in worst case to
compute vector for a document:

)(
2

)1(2

1

nO
nn

i
n

i

12

Sparse Vectors as Trees

• Index tokens in a document in a balanced
binary tree or trie with weights stored with
tokens at the leaves.

memory

<

< <

film variable

variable
2

memory
1

film
1

bit
2

Balanced Binary Tree

5

13

Sparse Vectors as Trees (cont.)

• Space overhead for tree structure: ~2n nodes.

• O(log n) time to find or update weight of a
specific token.

• O(n log n) time to construct vector.

• Need software package to support such data
structures.

14

Sparse Vectors as HashTables

• Store tokens in hashtable, with token string
as key and weight as value.
– Storage overhead for hashtable ~1.5n.

– Table must fit in main memory.

– Constant time to find or update weight of a
specific token (ignoring collisions).

– O(n) time to construct vector (ignoring
collisions).

15

Sparse Vectors in VSR

• Uses the hashtable approach called a
HashMapVector.

• The hashMapVector() method of a
Document computes and returns a
HashMapVector for the document.

• hashMapVector() only works once after
initial Document creation (i.e. Document
object does not store it internally for later
reuse).

6

16

Implementation Based on Inverted Files

• In practice, document vectors are not stored
directly; an inverted organization provides
much better efficiency.

• The keyword-to-document index can be
implemented as a hash table, a sorted array,
or a tree-based data structure (trie, B-tree).

• Critical issue is logarithmic or constant-time
access to token information.

17

Inverted Index

system

computer

database

science D2, 4

D5, 2

D1, 3

D7, 4

Index terms df

3

2

4

1

Dj, tfj

Index file Postings lists

18

VSR Inverted Index

HashMap

tokenHash

String
token

TokenInfo

double
idf

ArrayList
occList

TokenOccurence

DocumentReference
docRef

int
count

File
file

double
length

TokenOccurence

DocumentReference
docRef

int
count

File
file

double
length

…

7

19

Creating an Inverted Index

Create an empty HashMap, H;
For each document, D, (i.e. file in an input directory):

Create a HashMapVector,V, for D;
For each (non-zero) token, T, in V:

If T is not already in H, create an empty
TokenInfo for T and insert it into H;

Create a TokenOccurence for T in D and
add it to the occList in the TokenInfo for T;

Compute IDF for all tokens in H;
Compute vector lengths for all documents in H;

20

Computing IDF

Let N be the total number of Documents;

For each token, T, in H:

Determine the total number of documents, M,

in which T occurs (the length of T’s occList);

Set the IDF for T to log(N/M);

Note this requires a second pass through all the
tokens after all documents have been indexed.

21

Document Vector Length

• Remember that the length of a document
vector is the square-root of sum of the
squares of the weights of its tokens.

• Remember the weight of a token is:
TF * IDF

• Therefore, must wait until IDF’s are known
(and therefore until all documents are
indexed) before document lengths can be
determined.

8

22

Computing Document Lengths

Assume the length of all document vectors (stored in
the DocumentReference) are initialized to 0.0;

For each token T in H:
Let, I, be the IDF weight of T;
For each TokenOccurence of T in document D

Let, C, be the count of T in D;
Increment the length of D by (I*C)2;

For each document D in H:
Set the length of D to be the square-root of the

current stored length;

23

Minimizing Iterations Through Tokens

• To avoid iterating though all tokens twice
(after all documents are already indexed),
computing IDF’s and vector lengths are
combined in one iteration in VSR.

24

Time Complexity of Indexing

• Complexity of creating vector and indexing
a document of n tokens is O(n).

• So indexing m such documents is O(m n).
• Computing token IDFs for a vocabularly V

is O(|V|).
• Computing vector lengths is also O(m n).
• Since |V| m n, complete process is O(m n),

which is also the complexity of just reading
in the corpus.

9

25

Retrieval with an Inverted Index

• Tokens that are not in both the query and the
document do not effect cosine similarity.
– Product of token weights is zero and does not

contribute to the dot product.

• Usually the query is fairly short, and
therefore its vector is extremely sparse.

• Use inverted index to find the limited set of
documents that contain at least one of the
query words.

26

Inverted Query Retrieval Efficiency

• Assume that, on average, a query word
appears in B documents:

• Then retrieval time is O(|Q| B), which is
typically, much better than naïve retrieval
that examines all N documents, O(|V| N),
because |Q| << |V| and B << N.

Q = q1 q2 … qn

D11…D1B D21…D2B Dn1…DnB

27

Processing the Query

• Incrementally compute cosine similarity of
each indexed document as query words are
processed one by one.

• To accumulate a total score for each retrieved
document, store retrieved documents in a
hashtable, where DocumentReference is the
key and the partial accumulated score is the
value.

10

28

Inverted-Index Retrieval Algorithm

Create a HashMapVector, Q, for the query.
Create empty HashMap, R, to store retrieved documents with scores.
For each token, T, in Q:

Let I be the IDF of T, and K be the count of T in Q;
Set the weight of T in Q: W = K * I;
Let L be the list of TokenOccurences of T from H;
For each TokenOccurence, O, in L:

Let D be the document of O, and C be the count of O (tf of T in D);

If D is not already in R (D was not previously retrieved)

Then add D to R and initialize score to 0.0;
Increment D’s score by W * I * C; (product of T-weight in Q and D)

29

Retrieval Algorithm (cont)

Compute the length, L, of the vector Q (square-root of the sum of
the squares of its weights).

For each retrieved document D in R:

Let S be the current accumulated score of D;

(S is the dot-product of D and Q)

Let Y be the length of D as stored in its DocumentReference;

Normalize D’s final score to S/(L * Y);

Sort retrieved documents in R by final score and return results in
an array.

30

Efficiency Note

• To save computation and an extra iteration
through the tokens in the query, in VSR, the
computation of the length of the query
vector is integrated with the processing of
query tokens during retrieval.

11

31

User Interface

Until user terminates with an empty query:

Prompt user to type a query, Q.

Compute the ranked array of retrievals R for Q;

Print the name of top N documents in R;

Until user terminates with an empty command:

Prompt user for a command for this query result:

1) Show next N retrievals;

2) Show the Mth retrieved document;

(document shown in Firefox window)

32

Running VSR

• Invoke the system using the main method of
InvertedIndex.
– java ir.vsr.InvertedIndex <corpus-directory>

– Make sure your CLASSPATH has /u/mooney/ir-code

• Will index all files in a directory and then process
queries interactively.

• Optional flags include:
– “-html”: Strips HTML tags from files

– “-stem”: Stems tokens with Porter stemmer

33

Sample Document Corpus

• 900 science pages from the web.

• 300 random samples each from the CURLIE
indices for biology, physics, and chemistry.

• In /u/mooney/ir-code/corpora/curlie-science/

• Probably best to use “-html” flag.

• Sample trace with this corpus at:
– http://www.cs.utexas.edu/users/mooney/ir-course/sample-trace.txt

